8-3 Slope of a Line

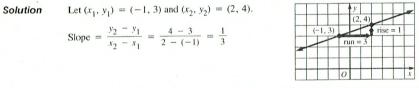
Objective: To find the slope of a line.

Vocabulary

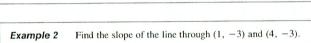
NAME

Slope If (x_1, y_1) and (x_2, y_2) are any two different points on a line, Slope = $\frac{\text{rise}}{\text{run}}$ = $\frac{\text{difference between } y\text{-coordinates}}{\text{difference between } x\text{-coordinates}}$ = $\frac{y_2 - y_1}{x_2 - x_1}$.

Positive slope The slope of a line that rises from left to right is positive.


Negative slope The slope of a line that falls from left to right is negative.

Zero slope A horizontal line has slope 0.


No slope A vertical line has no slope.

Collinear points Points that lie on the same line.

Example 1 Find the slope of the line through (-1, 3) and (2, 4).

DATE

Slope = $\frac{-3 - (-3)}{4 - 1} = \frac{0}{3} = 0$ The line has slope 0. Solution

Find the slope of the line through (2, -1) and (2, 5). Example 3 Slope = $\frac{5 - (-1)}{2} = \frac{6}{0}$ (undefined) The line has no slope. Solution

1.
$$(5, -6), (2, -4) - \frac{2}{3}$$
 2. $(-3, 6), (-5, 4)$ 1

$$-4$$
) $-\frac{2}{3}$ 2. $(-3, 6), (-5, 4)$ 1 3. $(0, 1), (2, -2)$ $-\frac{3}{2}$ 4 5. $(2, 1), (8, -2)$ $-\frac{1}{2}$ 6. $(-1, 5), (0, 0)$ -5

4.
$$(1, 2), (4, 6) \frac{4}{3}$$
5. $(2, 1), (8, -2) - \frac{1}{2}$
6. $(-1, 5), (0, 0)$

7.
$$(4, 3), (2, 7) = 2$$
8. $(5, 2), (-1, 2)$
9. $(-3, -4), (1, 2) = 2$
10. $(-5, 2), (7, -6) = 2$
11. $(1, 4), (-3, 0) = 1$
12. $(4, 4), (-4, 6) = 1$

10.
$$(-5, 2), (7, -6) - \frac{2}{3}$$
 11. $(1, 4), (-3, 0)$ 1 12. $(4, 4), (-4, 6) - \frac{1}{4}$ 13. $(8, -1), (6, 0) - \frac{1}{2}$ 14. $(3, -1), (-2, 4)$ -1 15. $(7, 4), (7, -4)$ no slope

8-3 Slope of a Line (continued)

Find the slope of the line with the equation 2x + 3y = 6. Example 4

NAME

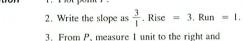
Solution

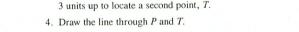
1. First find any two points on the line.

If
$$x = 0$$
: $2(0) + 3y = 6$ If $y = 0$: $2x + 3(0) = 6$

$$3y = 6$$
 $2x = 6$

$$y = 2$$
 $x = 3$
One point: $(0,2)$ Another point: $(3,0)$


2. Now use the slope formula. Slope
$$=$$
 $\frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 2}{3 - 0} = -\frac{2}{3}$


Find the slope of each line. If the line has no slope, say so.

16.
$$y = 2x - 1$$
 2 17. $y = 3x + 2$ 3 18. $y = 4 - 2x - 2$ 19. $y = 6 - 3x - 3$

20.
$$6x + 2y = 3$$
 -3 21. $2x - 5y = 10$ $\frac{2}{5}$ 22. $3x + 6y = 12$ - $\frac{1}{2}$ 23. $x - 2y = 4$ $\frac{1}{2}$ 24. $y = 5$ 0 25. $y + 2 = 0$ 0 26. $x = 1$ no slope 27. $2x - 3 = 0$ no slope

Example 5 Draw a line through the point
$$P(-1, 2)$$
 with a slope of 3. **Solution** 1. Plot point P .

Graphs given at the back of

DATE

Through the given point, draw a line with the given slope. this Answer Key.

28.
$$A(2, 1)$$
; slope 2 **29.** $B(-2, 3)$; slope -3 **30.** $C(1, -4)$; slope 4

31.
$$D(-3, -2)$$
; slope $\frac{2}{3}$ **32.** $E(-4, 1)$: slope $-\frac{1}{2}$ **33.** $F(3, 0)$; slope $-\frac{3}{4}$

34.
$$G(-2, -1)$$
; slope $\frac{2}{5}$ **35.** $H(-5, 2)$; slope -2 **36.** $I(2, -3)$; slope -1

Mixed Review Exercises

Solve.
$$\left\{-\frac{4}{3}\right\}$$
 1. $\frac{x+2}{2} + \frac{x}{4} = 0$ 2. $-3 = \frac{9b}{4} \left\{-\frac{4}{3}\right\}$ 3. $\frac{2+z}{3z} = \frac{4}{z} \left\{10\right\}$ 4. $-3(y+2) = 9$

Evaluate if
$$x = -2$$
, $y = 1$, $a = 3$, and $b = -4$.

5.
$$\frac{a+2b}{2a-b} - \frac{1}{2}$$
 6. $3(x+3y)$ 3 7. $\frac{1}{2}(3x+4y)$ -1 8. $(2a-3b)+5$ 23

Objective: To use the slope-intercept form of a linear equation.

Vocabulary

NAME

Solution

y-intercept The y-coordinate of a point where a graph intersects the y-axis.

Since the point is on the y-axis, its x-coordinate is 0.

Slope-intercept form of an equation The equation of a line in the form

$$y = mx + b$$
, where m is the slope and b is the y-intercept.

Parallel lines Lines in the same plane that do not intersect. Lines with the same slope and different y-intercepts are parallel.

Find the slope and y-intercept of each line: **a.** $y = \frac{5}{2}x + 4$ **b.** $y = \frac{5}{2}x$ **c.** y = 4Example 1

Solution Use the slope-intercept form,
$$y = mx + b$$
.

The slope is $\frac{5}{2}$ and

the y-intercept is 4.

a.
$$y = \frac{5}{2}x + 4$$
 b. $y = \frac{5}{2}x$

$$y = \frac{5}{2}x + 4$$

$$y = \frac{5}{2}x + 4$$

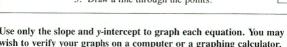
$$y = \frac{5}{2}x + 0$$

$$\frac{1}{b}x + 0$$

c. y = 4

y = 0x + 4

Find the slope and the y-intercept. 6.
$$-\frac{1}{3}$$
; -3
1. $y = x - 3$ 1; -3 2. $y = 2x + 3$ 2; 3 3. $y = -2$ 0; -2 4. $y = \frac{1}{2}x + 4$ $\frac{1}{2}$; 4


5.
$$y = -\frac{1}{2}x - \frac{1}{2}$$
; 0 6. $y = -\frac{1}{3}x - 3$ 7. $y = -2x + 6 - 2$; 68. $y = -4x + 8 - 4$; 8

$$\frac{1}{2}$$
; 0 6. $y = -\frac{1}{3}x - 3$ 7. $y = -2x + 6$ -2; 68. $y = -4x + 8$ -4;

9.
$$y = -x + 5$$
 -1; 5 10. $y=x - 9$ 1; -9 11. $y = 3x - 2$ 3; -2 12. $y = 3$ 0; 3

Example 2 Use only the slope and y-intercept to graph
$$y = -\frac{2}{2}x + 4$$
.

2. Since the slope
$$m = -\frac{2}{3} = \frac{-2}{3} = \frac{\text{rise}}{\text{run}}$$
, move 3 units to the right of $(0, 4)$ and 2 units down to locate a second point

Graphs given at the back of this Answer Kev.

13.
$$y = \frac{2}{3}x - 4$$
 14. $y = \frac{3}{4}x - 3$ 15. $y = -\frac{1}{2}x$ 16. $y = -\frac{3}{4}x - 1$

16.
$$y = -\frac{3}{4}x - 1$$

20. $y = 5$

17. y = -x + 3 18. y = 2x + 1 19. y = -3

139

8-4 The Slope-Intercept Form of a Linear Equation (continued)

Example 3 Use only the slope and y-intercept to graph 2x - 3y = 6.

Solution Solve for y to transform the equation

$$-3y = -2x + 6 \text{ into the form } y = mx + b.$$

$$y = \frac{2}{3}x - 2$$
1. Since $b = -2$, plot $(0, -2)$.

DATE

28. x + 4y = 4

2. Since
$$m = \frac{2}{3}$$
, move 3 units to the right and 2 units up to locate a second point.

3. Draw a line through the points. Use only the slope and y-intercept to graph each equation. You may Graphs given at the back

wish to verify your graphs on a computer or a graphing calculator. of this Answer Key. 21. 2x + y = 4**22.** 3x + y = 623. 2x - y = -6**24.** 3x - y = 3

25.
$$x + 2y = -2$$
 26. $2x - 3y = 6$ **27.** $4x - 3y = 12$

NAME

Example 4 Determine whether the lines with equations
$$4x + 5y = 20$$
 and $4x + 5y = 10$ are parallel.

Solution Write each equation in slope-intercept form:
$$4x + 5y = 20 \qquad 4x + 5y = 10$$

$$5y = -4x + 20 \qquad 5y = 4x + 10$$

$$4x + 5y = 20$$

$$5y = -4x + 20$$

$$y = -\frac{4}{5}x + 4$$

$$slope = -\frac{4}{5}y$$
-intercept = 4
$$4x + 5y = 10$$

$$5y = -4x + 10$$

$$y = -\frac{4}{5}x + 2$$

$$slope = -\frac{4}{5}y$$
-intercept = 2
Since both lines have the same slope and different y-intercepts, they are parallel.

Determine whether the lines whose equations are given are parallel.

29.
$$2x - y = 5$$

 $2x - y = 8$ yes

30. $x - 3y = 2$
 $-2x + 6y = 12$ yes

31. $2x - y = 6$
 $2y - x = 6$ no

32.
$$3x - y = 2$$

 $-6x + 2y = 8$ yes

33. $\frac{1}{2}x - \frac{1}{2}y = 4$
 $2x - 2y = 3$ yes

 $4x + \frac{1}{4}y = 2$

$$-6x + 2y = 8$$
 yes $2x - 2y = 3$ yes $4x + 4y = 2$ no

Mixed Review Exercises

Find the slope of the line through each pair of given points. **1.** (-2, 1), (-1, 2) **1 2.** (1, 2), (3, -2) **-2 3.** (-3, 4), (-1, -2)**4.** (1, 5), (2, 8) **3**

Factor. (2x + 3)(x + 2) $2(x - 1)^2$ (2y + 5z)(2y - 5z) (m - 5n)(m + 2n)5. $2x^2 + 7x + 6$ 6. $2x^2 - 4x + 2$ 7. $4y^2 - 25z^2$ 8. $m^2 - 3mn - 10n^2$